AGRICULTURAL TECHNOLOGIES
Chairs:
Frank Hartung, JKI, DE, Ralf Wilhelm, JKI, DE, Jens Sundstrom, SLU, SE, Alan Schulman, LUKE, FI, Odd-Arne Rognli, NMBU, NO
Activities:
This WG considers how the science that our members are producing may have an impact on agriculture. Agriculture will have to meet important demands in the near future. The production of sufficient, safe and healthy food for an increasing human population is a huge challenge. But this production also has to meet the need for a reduced impact of agriculture in a changing environment.
Everyone working in plant biology is aware of the significant advances in our knowledge of plant development, interactions of plants with other organisms — particularly pathogens, and the control of metabolic pathways. New methodologies are being developed to study plants both at molecular and cellular levels and as whole organisms or populations in the field. We are convinced that these methods and the information that we are obtaining from them will have, sooner or later, significant effects on agriculture. Agriculture has always been based on the best technologies available at a given moment. Plants were among the first species selected for the studies that led to the birth of genetics and during the last century plant breeding provided the basis for the present levels of food production. A number of technologies are already having an impact in plant breeding:
- Molecular markers are already being used routinely for many crop species by public and private breeders.
- Sequences of the main cultivated plants are becoming available and resequencing of varieties is being used to obtain collections of polymorphic sequences that allow massive genotyping and the discovery and use of complex genetic characters.
- Knowledge of pathways that control metabolism and development and generate resistance to pathogens is providing genes that may be useful to produce new variability through transformation.
- Methods for phenotyping are also being developed based on image analysis. They may become useful to follow the state of crops in the field helping farmers to take decisions.
The recent progress in genome editing allows the efficient and precise modification of genes in almost all plant species.
By introducing the genetic information for new metabolic pathways into nuclear and chloroplast genomes plants can be explored as production platform for a wide range of new products.
Next to this, increasing awareness and providing an actual overview and access to Risk Assessment (RA) and Regulatory Issues (RI) of new agricultural technologies, including genetic engineering and genome editing, also belongs to the activities of the WoGr. RA and RI influence the daily work and lives of researchers involved in developing and exploring new biotechnologies. The group aims to address this significant area, directly related to research and placing on the market. Main tasks arez to: increase awareness of RA and RI amongst EPSO members, provide an actual overview on and access to RA and RI documents for EPSO members, and flag up necessary actions.
Meetings:
This WG meets up to three times a year. Having met online on 26 April and 11 September, the next meeting will be held online on 27 November – please contact the WG Chairs if you are interested in attending. The current issues are: positions on Crop Genetic Improvement Technologies, New Plant Breeding Techniques (NPBT), the implementation of the Nagoya protocol at national level, advice on Synthetic Biology, plant breeders rights and patent rights. The group continues to provide science advice to policy on NPBTs to the European Commission and via its members to national level.
EPSO news developed by this WG:
EPSO first reaction to the European Commission’s legal proposal for a Regulation of the European Parliament and of the Council on plants obtained by certain new genomic techniques and their food and feed…
EPSO welcomes the proposal and sees the move towards a proportionate, more product-based regulatory environment, with evaluation on a case-by-case basis, as an important step into the future. It will enable Category-1 NGTs (NGT1), which cannot be distinguished from...
Genome editing – Improving legislation & starting flagships to better address climate, environmental, food & health challenges
On 24th May 2022 EPSO member-scientists and policy-makers from sixteen countries across Europe held the sixth informal meeting to assess the situation for research and development on New Plant Breeding Technologies (NPBTs) after the ruling of the ECJ in July 2018....
Contributions from plant research & innovation on the past, present & future of the European Research & Innovation Framework Programmes 2014-2027
EPSO welcomes the European Commission consultation and provides input on the achievements and suggests where improve Horizon Europe and the next Framework Programme (FP) to have a higher impact. The European Research and Innovation FPs are crucial to enable...
Relevant news from other sources:
Booklet on New Plant Breeding Techniques
Booklet on New Plant Breeding Techniques in a new era in which Scientists of Wageningen University & Research gives new insights into plant breeding techniques such as genome editing.
Scientists call for GMO opt-in option
Scientists call for GMO opt-in option: The EC should “develop a Directive for individual member states to authorize cultivating a GM crop in their territories after the European Food Safety Authority (EFSA) has concluded that the GM crop in question is as safe as the...
Genome editing: scientific opportunities, public interest and policy options in the EU. Explanatory Note.
Genome editing: scientific opportunities, public interest and policy options in the EU, report launch in Brussels, Explanatory Note from EC's High Level Group of Scientific Advisors
Members:
Eva-Mari Aro, Univ. Turku, FI
Pierre Barret, INRAE, FR
Sylvain Bischof, UZH, CH
Gintaras Brazauskas, LAMMC, LT
Ralph Bock, MPIMP Golm, DE
Josep Casacuberta, CSIC-CRAG, ES
Aldo Ceriotti, CNR, IT
Pedro Crevillen CBGP (UPM-INIA/CSIC), ES
René Custers, VIB, BE
Roberto Defez, CNR, IT
Theresa Fitzpatrick, UNIGE, CH
Jens Freitag, IPK, DE
Jordi Garcia Mas, CRAG, ES
Andreas Graner, IPK, DE
Wilhelm Gruissem, ETH Zurich, CH
Emmanuel Guiderdoni, CIRAD, FR
Claire Halpin, Hutton, UK
Frank Hartung, JKI, DE
Marie-Theres Hauser, BoKu, AT
Ingo Hein, Hutton, UK
Kelli Houston, Hutton, UK
Thomas Jacobs, VIB, BE
Huw Jones, IBERS UK
Jonathan Jones, TSL, UK
Sophien Kamoun, TSL, UK
Margit Laimer, BoKu, AT
Antonio Leyva, CNB-CSIC, ES
Fiorella Lo Schiavo , Univ. Padova, IT
Tiago Lourenço, ITQB, PT
Doris Lucyshyn, BoKu, AT
Elspeth MacRae, former Scion, NZ
Karin Metzlaff, EPSO
Heiko Mibus-Schoppe, Univ. Geisenheim, DE
Michele Morgante, Univ. Udine, IT
Moritz Nowack, VIB, BE
Vitantonio Pantaleo, CNR, IT
Roberto Papa, UNIVPM, IT
Pere Puigdomenech, CRAG, ES
Francesco Paolocci, CNR, IT
Anneli Ritala-Nurmi, VTT, FI
Odd Arne Rognli , NMBU, NO
Joerg Romeis, Agroscope, CH
Nelson Saibo, ITQB, PT
Cecilia Sarmiento, Univ. Talin, EE
Helga Schinkel, Fraunhofer IME, DE
Andrea Schubert, Univ. Studi Torino, IT
Alan Schulman, LUKE, FI
Uli Schurr, Jülich, DE
George Skaracis, Univ. Agricultural Athens, GR
Sjef Smeekens, Univ. Ultrecht, NL
Rene Smulders, WUR, NL
Thorben Sprink, JKI, DE
Eva Stoger, BoKu, AT
Jens Sundstroem, SLU, SE
Tage Thorstensen, NIBIO, NO
Tomas Vanek, CAS, CZ
Richard Visser, WUR, NL
Ralf Wilhelm, JKI, DE
Li-Hua Zhu, SLU Alnarp, SE
Observers:
Sandra Bendiscioli, EMBO, DE
Malcolm Bennett, Univ. Nottingham, UK
Henrik Brinch-Pedersen, Univ. Aarhus, DK
Matthias Fladung, Thuenen Inst, DE
Michel Garfinkel,
Johnathan Napier, Rothamsted, UK
Solveig Krogh Christiansen, Univ. Copenhagen, DK